# Rotation Due to Twist Calculator

Posted by Dinesh onUse this simple rock movements calculation tool helps to compute the rotation due to twist for your hydraulics and waterworks problems. If the ends of the arch elements are vertical, and the bases of the cantilever elements, horizontal, rock rotations and deflections of elements with parallel sides 1 ft apart may be calculated by the formula: `?`

.^{'} = (M_{t} * K_{4}) / (E_{r} * t^{2})

Values of K | |||||

Values of b/a | K_{1} | K_{2} | K_{3} | K_{4} | K_{5} |

1.0 | 4.32 | 0.62 | 1.02 | 4.65 | 0.345 |

1.5 | 4.65 | 0.78 | 1.23 | 4.80 | 0.413 |

2.0 | 4.84 | 0.91 | 1.39 | 5.18 | 0.458 |

3.0 | 5.04 | 1.10 | 1.60 | 5.64 | 0.515 |

4.0 | 5.15 | 1.25 | 1.77 | 5.90 | 0.550 |

5.0 | 5.22 | 1.36 | 1.89 | 6.08 | 0.574 |

6.0 | 5.27 | 1.47 | 2.00 | 6.20 | 0.592 |

8.0 | 5.32 | 1.63 | 2.17 | 6.37 | 0.614 |

10.0 | 5.36 | 1.75 | 2.31 | 6.46 | 0.630 |

15.0 | 5.41 | 1.98 | 2.55 | 6.59 | 0.653 |

20.0 | 5.43 | 2.16 | 2.72 | 6.66 | 0.668 |

## Rotation Due to Twist - Rock Movements Calculation

### Formula:

[?^{'}] = (M_{t} × K_{4}) / (E_{r} × t^{2})

- M
_{t}- Cantilever twisting moment - K
_{4}- Poisson’s ratio constants - E
_{r}- Elastic modulus of the rock - t - Radial thickness of the element
- ?
^{'}- Rotation due to twist